Approximation by Nörlund means of Walsh-Fourier series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation by Nörlund Means of Double Walsh–fourier Series for Lipschitz Functions

For double trigonometric Fourier series, Móricz and Rhoades studied the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of a function belonging to the class Lipα (0 < α 1) [12] and the class of continuous functions [13], on the two-dimensional torus. As a special case, they obtained the rate of uniform approximation by double Cesàro means....

متن کامل

On the Approximation Properties of Cesàro Means of Negative Order of Walsh-Fourier Series

In this paper we establish approximate properties of Cesàro (C,−α)-means with α ∈ (0, 1) of Walsh-Fourier series. This result allows one to obtain the condition which is sufficient for the convergence of the means σ−α n (f, x) to f (x) in the L p-metric. We also show that this condition cannot be improved in the case p = 1.

متن کامل

Maximal Operators of Fejér Means of Walsh–fourier Series

The main aim of this paper is to prove that there exists a martingale f ∈ H1/2 such that the maximal Fejér operator and the conjugate Fejér operator does not belong to the space L1/2.

متن کامل

On Walsh-fourier Series^)

Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1 ] may be expanded in a Walsh-Fourier series(3), f(x)~ ?.?=n ak\pk(x), where ak=fof(x)ypk(x)dx, k=0, 1, 2, • • • . Fine exhibited some of the basic similarities and differences between the trigonometric orthonormal system and the Walsh system. He identified the Walsh functions with the full set of characters of the dyadic ...

متن کامل

On Measure of Approximation by Means of Fourier Series

A many of approximation methods in C2 (Fej er, de la Vall ee Poussin etc.) may be generated via a certain function ' 2 C[0;1] with '(0) = 1, '(1) = 0. The function 'j(t) = cos(j 1=2) t (j 2 N) generates the Rogosinski approximation method [N. K. Bari, "A Treatise on Trigonometric Series," I, II, Pergamon Press, 1964]. Our idea consists in representing ' by the orthogonal system 'j to extend res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1992

ISSN: 0021-9045

DOI: 10.1016/0021-9045(92)90067-x